full screen
Home > Medicine > Nursing & ancillary services > Biomedical engineering > Three-Dimensional Integration of Semiconductors
Three-Dimensional Integration of Semiconductors

Three-Dimensional Integration of Semiconductors


     0     
5
4
3
2
1



International Edition


About the Book

Chapter 1 - Research and Development History of Three Dimensional (3D) Integration Technology 1.1 Introduction 1.1.1 The International Technology Roadmap for Semiconductors 1.1.2 Three-dimensional Integration Technology 1.2 Motivation for 3D Integration Technology y 1.3 Research and Development History of 3D Integration Technology R&D History of 3D Packaging Technology 1.3.1 3D Packaging Technology 1.3.2 Origin of the TSV Concept 1.3.3 Research and Development History of 3D Technology in Organizations 1.3.3.1 Japan 1.3.3.2 Japanese 3D Integration Technology Research and Development Project (Dream Chip) 1.3.3.3 USA 1.3.3.4 Europe 1.3.3.5 Asia 1.3.3.6 International 1.4 Research and Development History of 3D Integration Technology for Applications 1.4.1 CMOS Image Sensor and MEMS 1.4.2 DRAM 1.4.3 2.5D with Interposer 1.4.4 Others Chapter 2- Recent Research and Development Activities of Three Dimensional (3D) Integration Technology 2.1 Recent Announcement of Research and Development Activities 2.2 Dynamic Random-Access Memory (DRAM) 2.2.1 Through-Silicon Via (TSV) Technology for DRAM 2.2.2 Wide I/O and Wide I/O2 Mobile DRAM 2.3 Hybrid Memory Cube (HMC) and High Bandwidth Memory (HBM) DRAM 2.3.1 Hybrid Memory Cube (HMC)High Bandwidth Memory (HBM) DRAM 2.3.2 High Bandwidth Memory (HBM) DRAM 2.4 FPGA and 2.5D 2.5 Others 2.6 New Energy and Industrial Technology Development Organization (NEDO) Japan 2.6.1 Next Generation "Smart Device" Project 2.6.2 Background, Purpose and Target of "Smart Device" Project Chapter 3- TSV Processes 3.1 Deep Silicon Etching by Bosch process 3.1.1 Introduction 3.1.2 Basic characteristics of the Bosch process 3.1.3 Bosch Etching Equipment for TSV 3.1.4 Conclusions 3.2 High Rate Silicon-Via Etching and Basics of Sidewall Etch Reaction by Steady-State Etch Process 3.2.1 Introduction 3.2.2 MERIE Process for TSV Application 3.2.2.1 Effect of RF Frequency 3.2.2.2 Effect of Pressure 3.2.2.3 Effect of Oxygen Addition 3.2.3 Investigation of Sidewall Etch Reaction Induced by SF6/O2 Plasma 3.2.3.1 Effect of Oxygen Addition 3.2.3.2 Effect of Temperature 3.2.3.3 Effect of SiF4 Addition 3.2.4 Conclusion 3.3 Low Temperature CVD Technology 3.3.1 Introduction 3.3.2 Cathode-Coupled PECVD (LS-CVD) 3.3.3 Low Temperature SiO2 Deposition 3.3.3.1 Wafer Temperature During Low Temperature Deposition 3.3.3.2 Step Coverage in Si Via Holes 3.3.3.3 Electrical Characteristics of SiO2 Film Deposited at Low Temperature 3.3.3.4 Stress Control of SiO2 Film Deposited Using LS-CVD 3.3.4 Conclusion 3.4 Electrodeposition for Via-Filling 3.4.1 Cu+ Ion as an Accelerant Additive of Copper Electrodeposition 3.4.2 Relation between via Filling and Cu+ Ion by Periodical Reverse Current Waveform 3.4.3 Simulation of Cu+ Ion Distribution inside the Via 3.4.4 High Speed via Filling Electrodeposition by Other Organizations 3.4.5 Reduction of Thermal Expansion Coefficient of Electrodeposited Copper for TSV by Additive Chapter 4 - Wafer Handling and Thinning Processes 4.1 Wafer Thinning Solution for TSV Devices 4.1.1 Introduction 4.1.2 General Thinning 4.1.3 Wafer Thinning for TSV devices 4.1.4 TTV control 4.1.5 Summary 4.2 A Novel Via Middle TSV Thinning Technology by Si/Cu Grinding and CMP 4.2.1 Introduction 4.2.2 Methods 4.2.3 Results and Discussion 4.2.3.1 Si/Cu Same Rate CMP (1st CMP) 4.2.3.2 TSV Protrusion CMP (2nd CMP) 4.2.3.3 Post CMP Cleaning after 2nd CMP 4.2.4 Conclusion 4.3 Temporally Bonding 4.3.1 Background 4.3.2 The 3MTM Temporary Bonding Materials 4.3.3 The 3MTM Temporary Adhesive 4.3.4 Laser Absorbing Layer 4.3.5 The Next Steps 4.4 Temporary Bonding and Debonding for Through-Silicon Via (TSV) Processing 4.4.1 Introduction 4.4.2 Temporary Bonding and Debonding Process 4.4.3 Debonding Method 4.4.4 Functions and Performance Requirements for Temporary Bonding Device 4.4.5 Ability and Performance Requirements for Debonding Devices 4.4.6 Tokyo Electron's Temporary Bonder and Debonder Device Concept and Lineup 4.4.7 Future Outlook Chapter
About the Author:

Kazuo Kondo is Professor at Department of Chemical engineering, Osaka Prefecture University. He took his PhD in Chemical Engineering at the University of Illinois in 1981. He has worked for Sumitomo Metal Industries, Hokkaido University and Okayama University. He has 200 research publications and 100 patents. His major research is Copper Electrodeposition for TSV. His research extends in various fields not only in electrodeposition, but also in battery and CVD. He is member of Electrochemical Society, IEEE, Society of Chemical engineering Japan, Japanese Institute of Electronics Packaging, Surface Finishing Society of Japan, Materia Japan, Electrochemistry Japan and Japanese Society of Applied Physics.

Morihiro Kada is the invited researcher of The National Institute of Advanced Industrial Science and Technology (AIST) and the part-time researcher of Osaka Prefecture University. Prior to joining to AIST and the university he was the consultant of Association of Super-Advanced Electronics Technologies (ASET). Since April 2007 he has been heading the Japanese national R&D project on 3D-Integration technology as the Project in ASET. Before joining to ASET, he had been the General Manager of the Advanced Packaging Development Department in Sharp Corporation. He has more than forty years experience in semiconductor packaging engineering, with major emphasis on developing chip scale, chip stack package and Three Dimensional-System in Package (3D-SiP) as the pioneer of 3D-Integration technology in the world.

Kenji Takahashi is a Chief Specialist at Memory Packaging Development Department, Memory Division, Semiconductor & Strage Company, Toshiba Corporation. He received a M.E. Degree of from Chemical Engineering at the University of Tokyo in 1984 and Ph.D. from Information Science and Electrical Engineering at Kyushu University in 2010. His major research and development is focused on semiconductor packaging and

chip package interaction, especially through-silicon via technology. He was the Research Manager of Electronic System Integration Technology Research Department, Association of Super-Advanced Electronics Technologies (ASET). He is a Senior Member of IEEE, a member of Society for Chemical Engineers, Japan, Institute of Electronics, Information and Communication Engineers and Japanese Institute of Electronics Packaging.


Best Sellers



Product Details
  • ISBN-13: 9783319792552
  • Publisher: Springer
  • Publisher Imprint: Springer
  • Height: 234 mm
  • No of Pages: 408
  • Spine Width: 22 mm
  • Weight: 648 gr
  • ISBN-10: 3319792555
  • Publisher Date: 28 Mar 2019
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Sub Title: Processing, Materials, and Applications
  • Width: 156 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Three-Dimensional Integration of Semiconductors
Springer -
Three-Dimensional Integration of Semiconductors
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Three-Dimensional Integration of Semiconductors

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Booksbay (the "CRR Service").


    By submitting any content to Booksbay, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Booksbay (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Booksbay a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Booksbay may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Booksbay's sole discretion. Booksbay reserves the right to change, condense, withhold publication, remove or delete any content on Booksbay's website that Booksbay deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Booksbay does not guarantee that you will have any recourse through Booksbay to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Booksbay reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Booksbay, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Booksbay, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!