full screen
Home > Technology & Engineering > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > Strong Fermion Interactions in Fractional Quantum Hall States
Strong Fermion Interactions in Fractional Quantum Hall States

Strong Fermion Interactions in Fractional Quantum Hall States


     0     
5
4
3
2
1



International Edition


About the Book

1. (Chapter 1 Title: Introduction to Quantum Hall States.)Historical background of many-body interactions in the context of integral and fractional quantumHall effect. Review of experimentally observed families of IQL states and their interpretations2. (Chapter 2 Title: The composite Fermion hierarchy and justification of the CF approach.)Jain's mean field composite Fermion picture, Laughlin-Jastrow type correlations. The workof the University of Tennessee group in condensed matter physics justifying MFCF undercertain conditions on the interaction energy. The concept of "Effective CF angular momentum"associated to the lowest CF Landau level. Partially filled shells and Quasi-electons. Haldane'sheirarchy of Laughlin correlated daughter-states and Jain's sequence of IQL states3. (Chapter 3 Title: Correlation diagrams and the Algebra of correlation functions.)Justification of the CF approach. Establishing (with rigorous proofs) conditions under whichJain's elegant CF approach correctly predicts the angular momentum multiplets. Correlationdiagram approach to Moore-Read states provides a new insight and a more general view.Fully symmetric correlation functions for N Fermions in an IQL state for any filing factor lessthan 1/2, obtained from balanced correlation diagrams. Detailed treatment of the algebraiccorrelation functions and diagrams for small values of N; overlap with the numerical workon diagonalization.4. (Chapter 4 Title: Invariant-theoretic essentials.)A self-contained brief introduction to the mathematical theory of invariants of binary formsin context of correlation diagrams and their associated correlation functions. Semi-invariantsof binary forms and dimension counting theorems. The relationship between the semi-invariantsand angular momentum multiplets in presence of quasi-electrons.5. (Chapter 5 Title: Constructions of correlation diagrams and their correlation functions.)Theorems proving existence of nontrivial fully symmetric correlation functions fora class of correlation diagrams. Symmetry groups of the balanced correlation diagramsand their utility from the computational point of view.6. (Chapter 6 Title: Trial wave functions for systems of Fermions in IQL state with generalfilling factor $n / (2 p n + - 1) functions and detailed examination of their special algebraic features.7. (Chapter 7 Title: Correlation functions for some Configurations with quasi-electrons andrelated open questions. ) Concrete constructions of fully symmetric correlation functions forconfigurations of N interacting Fermions some of which are quasi-electrons, for a familytotal angular momenta. Various open mathematical questions directly related to suchconstructions.
About the Author: John J. Quinn is a well-known theoretical physicist as well as an academic administrator; he is a former Chancellor and a professor emeritus since 2015 at the University of Tennessee, Knoxville, USA. He is an expert in the areas of condensed matter physics and many-body theory including two dimensional Composite fermions, low-dimensional systems, quantum Hall effect and nanoscience. Quinn was also one of the first researchers to recognize that physics of 'two-dimensional electron systems' needs to be treated as a professional-sub-specialty. Quinn earned his Ph. D. in Physics in 1958 from the University of Maryland under the supervision of Professor R.A. Ferrell. In 1958, Quinn joined the technical staff at RCA Laboratories. Subsequently, he held visiting positions at the University of Pennsylvania and Purdue University before joining the physics faculty at Brown University in 1965. From 1965 to 1989, Quinn was at Brown University; he held the Ford Foundation Chair in Physics from 1985-1989.
From 1989 to 1992, Quinn was the Chancellor of the University of Tennessee, where he has held the Willis Lincoln Chair of Excellence, Professor of Physics and Professor of Engineering Science and Mechanics, from 1992 to 2015. He is a co-author of Solid State Physics (Springer, 2009) with Kyung-Soo Yi. Quinn is a recipient of many honours, including: Fellow, American Physics Society, 1963; NATO Fellow, 1971-1972; ScD Honoris Causa, Purdue University, 1992; Outstanding Graduate Alumnus Award, Physics Department, University of Maryland, 2005; The Distinguished Alumnus Award, College of Computer, Math and Natural Sciences, University of Maryland, 2012.

Shashikant B. Mulay is a Professor at the Department of Mathematics, University of Tennessee. Mulay earned his Ph.D. in Mathematics in 1982 from Purdue University under the supervision of Professor Shreeram Abhyankar. His research interests are in Algebra. He has held visiting positions at Purdue University, University of Kentucky, POSTECH (South Korea), MSRI Berkeley and the Max Plank Institute (Germany).

Mark A. Shattuck is a Researcher at the Institute for Computational Science, Ton Duc Thang University in Vietnam (2017-present) and an Adjunct Assistant Professor in the Department of Mathematics, University of Tennessee (2013-present). Shattuck earned his Ph.D. in Mathematics in 2005 from the University of Tennessee under the supervision of Professor Carl Wagner. His research interests are primarily in Enumerative and Algebraic Combinatorics. He has been a Visiting Researcher at the University of Haifa (Israel) in 2011-2012 and in 2015.


Best Sellers



Product Details
  • ISBN-13: 9783030004934
  • Publisher: Springer
  • Publisher Imprint: Springer
  • Height: 234 mm
  • No of Pages: 156
  • Series Title: Springer Solid-State Sciences
  • Sub Title: Correlation Functions
  • Width: 156 mm
  • ISBN-10: 3030004937
  • Publisher Date: 12 Nov 2018
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Spine Width: 11 mm
  • Weight: 467 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Strong Fermion Interactions in Fractional Quantum Hall States
Springer -
Strong Fermion Interactions in Fractional Quantum Hall States
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Strong Fermion Interactions in Fractional Quantum Hall States

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Booksbay (the "CRR Service").


    By submitting any content to Booksbay, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Booksbay (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Booksbay a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Booksbay may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Booksbay's sole discretion. Booksbay reserves the right to change, condense, withhold publication, remove or delete any content on Booksbay's website that Booksbay deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Booksbay does not guarantee that you will have any recourse through Booksbay to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Booksbay reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Booksbay, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Booksbay, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!