full screen
Home > Medicine > Nursing & ancillary services > Biomedical engineering > Organ Tissue Engineering
Organ Tissue Engineering

Organ Tissue Engineering


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
About the Book

The notion of being able to engineer complete organs has inspired an entire generation of researchers. While recent years have brought significant progress in regenerative medicine and tissue engineering, the immense challenges encountered when trying to engineer an entire organ have to be acknowledged. Despite a good understanding of cell phenotypes, cellular niches and cell-to-biomaterial interactions, the formation of tissues composed of multiple cells remains highly challenging. Only a step-by-step approach will allow the future production of a living tissue construct ready for implantation and to augment organ function.

In this book, expert authors present the current state of this approach. It offers a concise overview and serves as a great starting point for anyone interested in the application of tissue engineering or regenerative medicine for organ engineering. Each chapter contains a short overview including physiological and pathological changes as well as the current clinical need. The potential cell sources and suitable biomaterials for each organ type are discussed and possibilities to produce organ-like structures are illustrated. The ultimate goal is for the generated small tissues to unfold their full potential in vivo and to serve as a native tissue equivalent. By integrating and evolving, these implants will form functional tissue in-vivo. This book discusses the desired outcome by focusing on well-defined functional readouts. Each chapter addresses the status of clinical translations and closes with the discussion of current bottlenecks and an outlook for the coming years.

A successful regenerative medicine approach could solve organ shortage by providing biological substitutes for clinical use - clearly, this merits a collaborative effort.


About the Author: Daniel Eberli is a scientific physician working in the translational field of urologic tissue engineering. He has a medical degree from the Medical School in Zurich, Switzerland, and a Ph.D. in Molecular Medicine from Wake Forest University, Winston Salem, NC. He has a faculty position at the Department of Urology at the University Hospital Zurich, where he devotes half of his time to patient care. Together with his research team, he is working on novel biomaterials for bladder reconstruction, improving autonomic innervation, cellular treatment of incontinence and tracking of stem cells.

Sang Jin Lee, Ph.D., is currently a tenured associate professor at Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine. Dr. Lee received his Ph.D. in chemical engineering from Hanyang University, Seoul, Korea, in 2003 and took a postdoctoral fellowship in the Laboratories for Tissue Engineering and Cellular Therapeutics at Harvard Medical School and Children's Hospital Boston and the WFIRM, where he is currently a faculty member. He is also cross-appointed to the Virginia Tech-WFU Biomedical Engineering and Science. Dr. Lee has authored more than 140 scientific publications and reviews, has edited 2 textbooks, and has written 34 chapters in several books. Dr. Lee has an ix extensive knowledge and experience in biomaterials science, especially, biodegradable polymers and tunable hydrogels, with specific training and expertise in key research areas for tissue engineering and regenerative medicine. His research team has developed various biomaterial systems that improve cellular interactions by providing appropriate environmental cues. These biomaterial systems consist of drug/protein delivery system, nano/micro-scaled topographical feature, and hybrid materials that can actively participate in functional tissue regeneration. Recently, his team is utilizing automated 3D bioprinting technology to manufacture complex, multicellular living tissue constructs that mimic the structure of native tissues. This can be accomplished by optimizing the formulation of biomaterials to serve as bioinks for 3D bioprinting, and by providing the biological microenvironment needed for the successful delivery of cells and biomaterials to discrete locations within the 3D structure.

Sang Jin Lee, Ph.D., is currently a tenured associate professor at Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine. Dr. Lee received his Ph.D. in chemical engineering from Hanyang University, Seoul, Korea, in 2003 and took a postdoctoral fellowship in the Laboratories for Tissue Engineering and Cellular Therapeutics at Harvard Medical School and Children's Hospital Boston and the WFIRM, where he is currently a faculty member. He is also cross-appointed to the Virginia Tech-WFU Biomedical Engineering and Science. Dr. Lee has authored more than 140 scientific publications and reviews, has edited 2 textbooks, and has written 34 chapters in several books. Dr. Lee has an ix extensive knowledge and experience in biomaterials science, especially, biodegradable polymers and tunable hydrogels, with specific training and expertise in key research areas for tissue engineering and regenerative medicine. His research team has developed various biomaterial systems that improve cellular interactions by providing appropriate environmental cues. These biomaterial systems consist of drug/protein delivery system, nano/micro-scaled topographical feature, and hybrid materials that can actively participate in functional tissue regeneration. Recently, his team is utilizing automated 3D bioprinting technology to manufacture complex, multicellular living tissue constructs that mimic the structure of native tissues. This can be accomplished by optimizing the formulation of biomaterials to serve as bioinks for 3D bioprinting, and by providing the biological microenvironment needed for the successful delivery of cells and biomaterials to discrete locations within the 3D structure.



Best Sellers



Product Details
  • ISBN-13: 9783030442125
  • Publisher: Springer International Publishing
  • Publisher Imprint: Springer
  • Height: 235 mm
  • No of Pages: 600
  • Spine Width: 0 mm
  • Width: 155 mm
  • ISBN-10: 3030442128
  • Publisher Date: 31 May 2021
  • Binding: Mixed media product
  • Language: English
  • Returnable: Y
  • Weight: 750 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Organ Tissue Engineering
Springer International Publishing -
Organ Tissue Engineering
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Organ Tissue Engineering

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Booksbay (the "CRR Service").


    By submitting any content to Booksbay, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Booksbay (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Booksbay a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Booksbay may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Booksbay's sole discretion. Booksbay reserves the right to change, condense, withhold publication, remove or delete any content on Booksbay's website that Booksbay deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Booksbay does not guarantee that you will have any recourse through Booksbay to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Booksbay reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Booksbay, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Booksbay, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!