1 Introduction. 2 Anatomy and Dielectric Properties of the Breast and Breast Cancer.
2.1 Anatomy of the Breast. 2.2 Breast Cancer. 2.3 More Recent Dielectric Studies.3 Microwave Tomography.
3.1 Introduction. 3.2 Problem Formulation. 3.3 Linear Tomography. 3.4 Non-Linear Microwave Tomography. 4 Confocal Microwave Imaging.
4.1 Introduction. 4.2 Artefact Removal Algorithms. 4.3 Data Independent Beamformers. 4.4 Adaptive Beamforming. 4.5 Path Dielectric Estimation Techniques. 5 Tumour Classification.
5.1 Tumour Numerical Morphological Models. 5.2 Classification of Early-Stage Breast Cancer in Numerical Simulations. 5.3 Classification Based on Radar Target Signature Classification of Tumours. 5.4 Classification of Early-Stage Breast Cancer in 3D Experimental Results.6 Experimental Systems.
6.1 Operational systems. 6.2 Tomographic Systems. 6.3 Radar based ultra-wideband systems.
About the Author: Raquel Cruz Conceição is a post-doctoral researcher affiliated with both the Instítuto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal and Institute of Biomedical Engineering at the University of Oxford, UK. She is also Invited Assistant Professor at the University of Lisbon. She holds a PhD in Electrical and Electronic Engineering from the National University of Ireland Galway and a Masters in Biomedical Engineering from Universidade Nova de Lisboa. She has 8 years of research experience on the topic of Microwave Imaging, developing techniques to detect and classify breast cancer. She is the chair of COST Action TD1301 (Microwave Medical Applications, MiMed), and organises bi-annual meetings for over 200 research and medical participants from 29 countries. She has secured several research grants since 2005, most significantly a FP7 Marie Curie Intra European Fellowship. She has supervised and mentored 14 Master and PhD students, published 15 journal papers and 24 conference papers, co-authored with 48 international researchers, acted as reviewer for 18 journals and conferences, and is Associate Editor for Medical Physics. Also, she has been awarded the ANACOM URSI Portugal prize in 2013 and URSI Young Scientist in 2014, among other 6 prizes and awards.
Johan Jacob Mohr's research has spanned a broad range of electromagnetic sensing technologies ranging from air- and satellite borne synthetic aperture radar interferometry for measurement of glacier dynamics, over lidar for wind sensing to microwave imaging for medical applications. He received his PhD in 1997 from the Technical University of Denmark (DTU), and was at an internship at the Radar Science and Engineering group at the Jet Propulsion Laboratory in 1994-95. He continued at DTU as assistant and associate professor with projects on interferometric synthetic aperture radar. In 2006, he received a university position at DTU, where he gradually changed focus to the development of a second-generation 3-D microwave tomography system for breast cancer detection suitable for clinical test. Included was improvement of data acquisition accuracy, methods for prediction of the accuracy of the resulting images and utilization of multiple frequencies. Additionally, he supervised a wide range of bachelor and masters with Danish industry. In 2015, he joined Mellanox Technologies as Principal Engineer and is now working on system design and signal integrity.
Martin O'Halloran is a European Research Council (ERC) Fellow and Science Foundation Ireland Principal Investigator at the National University of Ireland Galway. His research interests span low-frequency and high-frequency electromagnetic imaging, radiofrequency hyperthermia and ablation, and the dielectric properties of biological tissue. He holds a PhD in Electrical and Electronic Engineering, and Master's degrees in both Academic Practice, and Clinical Research from the National University of Ireland Galway (NUIG). He has over 20 national and international research awards, and only last year (2014) was awarded Engineers Ireland's Chartered Engineer of the Year and NUIG's Early Stage Researcher of the Year for his work on medical device development. In the period from 2011-2015, he secured over 4.5 million in direct research and commercialization funding, and is technical-collaborator in two start-up medical device companies at NUIG. He has over 30 peer reviewed journal papers, and a similar number of international conference papers. He is also Vice-Chair of the MiMed COST Action (TD1301).