full screen
Home > Technology & Engineering > Mechanical engineering & materials > Materials science > Testing of materials > Culvert Design for Aquatic Organism Passage
Culvert Design for Aquatic Organism Passage

Culvert Design for Aquatic Organism Passage


     0     
5
4
3
2
1



International Edition


About the Book

This manual presents a stream simulation design procedure, methods and best practices for designing culverts to facilitate aquatic organism passage (AOP). Although this manual focuses on culverts, the design team should recognize that an appropriate structure for any given crossing may be a bridge. This manual is not intended to conflict with or replace accepted guidance and procedures adopted in particular locations. When specific water crossing design methods are required in the jurisdiction where the crossing is located, those methods should be applied. In addition, local and regional requirements may overlay additional steps on this design approach. Since fish have been the primary focus of AOP design efforts over the years, and much has been learned about fish specifically, many of the references to AOP in this manual derive directly from what is known about fish. However, the broader scope of AOP is the focus of the manual. Because of the variety of fish and other aquatic species in the U.S., the complex nature of fish behavior, and the variation in such behaviors and capabilities over the various life-stages, designing hydraulic structures with satisfactory aquatic organism passage (AOP) characteristics remains a challenging endeavor. Over the years, resource agencies and others have assembled a large amount of empirical data and field experience to guide the design of roadway structures, particularly culverts, for passage. Much of the resulting criteria are based upon the natural geomorphic characteristics of streams supporting the aquatic ecosystems of interest, and many of the procedures implementing those criteria seek to replicate the stream and floodplain characteristics and geometries within the roadway crossing structure. The "stream simulation" approach such as developed by the United States Forest Service (FSSWG, 2008) is one approach that is state of the art. Given the diverse behavior and capabilities of fish and other aquatic organisms, design procedures necessarily rely on surrogate parameters and indicators as measures for successful passage design. Many of the existing AOP design procedures rely on dimensional characteristics of the stream such as bankfull width. A critique of the use of dimensional stream characteristics is that they: 1) can be difficult to identify, 2) can be highly variable within a stream reach, 3) assume the stream is in dynamic equilibrium, and 4) have no known relationship to passage requirements. The procedure described in this manual uses streambed sediment behavior as its surrogate parameter. The hypothesis of using sediment behavior as a surrogate parameter is that aquatic organisms in the stream are exposed to similar forces and stresses experienced by the streambed material. The design goal is to provide a stream crossing that has an equivalent effect, over a range of stream flows, on the streambed material within the culvert compared with the streambed material upstream and downstream of the culvert. When this is achieved and the velocities and depths are comparable to those occurring in the stream, the conditions through the crossing should present no more of an obstacle to aquatic organisms than conditions in the adjacent natural channel. The primary goal of this document is to incorporate many of the current geomorphic-based design approaches for AOP while providing a procedure based on quantitative best practices. The stream simulation design procedure is intended to create conditions within the crossing similar to those conditions in the natural channel to provide for aquatic organism passage (AOP). This document seeks to identify, develop, and present a bed stability-based approach that accounts for the physical processes related to the natural hydraulic, stream stability, and sediment transport characteristics of a particular stream crossing as surrogate measures.


Best Sellers



Product Details
  • ISBN-13: 9781508810988
  • Publisher: Createspace Independent Publishing Platform
  • Publisher Imprint: Createspace Independent Publishing Platform
  • Height: 279 mm
  • No of Pages: 238
  • Series Title: English
  • Weight: 612 gr
  • ISBN-10: 1508810982
  • Publisher Date: 10 Mar 2015
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Spine Width: 13 mm
  • Width: 216 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Culvert Design for Aquatic Organism Passage
Createspace Independent Publishing Platform -
Culvert Design for Aquatic Organism Passage
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Culvert Design for Aquatic Organism Passage

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Booksbay (the "CRR Service").


    By submitting any content to Booksbay, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Booksbay (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Booksbay a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Booksbay may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Booksbay's sole discretion. Booksbay reserves the right to change, condense, withhold publication, remove or delete any content on Booksbay's website that Booksbay deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Booksbay does not guarantee that you will have any recourse through Booksbay to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Booksbay reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Booksbay, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Booksbay, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!